If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4k^2-17=-7
We move all terms to the left:
1/4k^2-17-(-7)=0
Domain of the equation: 4k^2!=0We add all the numbers together, and all the variables
k^2!=0/4
k^2!=√0
k!=0
k∈R
1/4k^2-10=0
We multiply all the terms by the denominator
-10*4k^2+1=0
Wy multiply elements
-40k^2+1=0
a = -40; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-40)·1
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*-40}=\frac{0-4\sqrt{10}}{-80} =-\frac{4\sqrt{10}}{-80} =-\frac{\sqrt{10}}{-20} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*-40}=\frac{0+4\sqrt{10}}{-80} =\frac{4\sqrt{10}}{-80} =\frac{\sqrt{10}}{-20} $
| -8x+22=2(x+7)-8x | | 4x+19+3x+8=90 | | 72+(8x+12)+(180-(19-4))=180 | | 2x+18=9x | | 9a+12=74 | | -12+4n=20 | | 47+16x=135 | | 5/4xx=65 | | 6x+53+3x+28=180 | | 18=-6x-3x | | -22=6(u-3)-8u | | 5k-6(4k-3)=-77 | | 90+1.5=x | | 11x-5=-6x+97 | | 14=-2(3x+4) | | 4x-2(x+3)-10x=-11-2 | | 5(2x-8)=8x+2 | | 5+4(-2-4n)=-67 | | x5+25=25 | | (m+8)(m+17)=0 | | x5+25=20 | | 4(3x-2)=5(2x+6) | | 2x2-6x-8=2•(x2-3x-4) | | 2X+4+3-1=2x+4 | | 7x+200=3x | | x=4^x-3 | | 10u-3u+2u=18 | | x+(2x-4)=71 | | -2x+18=6x-14 | | y+y+y+y=260 | | 6y-13=68(y+5) | | 4(1+3k)+3=43 |